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a b s t r a c t 

In this paper, a factor graph model for unsupervised feature selection (FGUFS) is proposed. 

FGUFS explicitly measures the similarities between features; these similarities are passed 

to each other as messages in the graph model. The importance score of each feature is 

calculated using the message-passing algorithm, and then feature selection is performed 

based on the final importance scores. Extensive experiments were performed on several 

datasets, and the results demonstrate that FGUFS outperforms other state-of-art unsuper- 

vised feature selection algorithms on several performance measures. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The feature selection problem has been studied by the statistics and machine learning communities for many years and

is one of the most important methods for data preprocessing [10] . The main idea is to select a subset of features by elimi-

nating irrelevant features that have little or no predictive information. This provides an important and frequently employed

dimensionality reduction technique for machine learning [9] . In addition, it reduces the number of features, and removes

irrelevant or redundant noisy data. The best subset of features can contain the least number of features and contribute to

accuracy as much as possible. This is a key method of preprocessing datasets and provides one approach to avoiding the

pitfalls of dimensionality. This approach has been employed for many applications, such as images [25] , video [15] , text

[35,36] , and gene analysis [7,34] . It is also of interest that wood moisture content prediction is based on feature selection

techniques [18] . 

Feature selection can considerably enhance the interpretability of machine learning models, and models integrated with

feature selection often exhibit better generalization [16] . Furthermore, it is a prominent and popular method for finding an

appropriate subset of predictive features. Several problems may result from the presence of irrelevant features during the

learning process, and one of the motivations of feature selection is to solve these problems: 

1. Additional computational costs are always induced by the presence of irrelevant features in linear models, and the com-

putational cost for prediction increases polynomially with the number of features. 

2. The presence of irrelevant or redundant features may lead to overfitting and a poorly constructed model. 

3. The goal of feature selection is to keep the size of the learning model as small as possible. It is reasonable and important
to ignore irrelevant features or those that have little effect. 
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Prominent among the common objectives of feature selection are the aims of improving the prediction performance and

providing faster and more effective predictors while enabling a better understanding of the preprocessing of data. In many

data analysis tasks, feature selection is commonly regarded as a crucial method for performing data preprocessing, and

it is frequently applied for dimensionality reduction. In addition, it is significant that feature selection can make machine

learning models comprehensible, and often improves the generalizability of constructed models. Therefore, finding a good

subset of features is an important task in many situations. 

Feature selection and transformation are typical methods of dimensionality reduction. The restricted Boltzmann machine

(RBM) [19] in deep learning is a successful feature transformation method, and there have been at least 10 0 0 papers on

improving RBM or applying RBM in connection with feature extraction published in the last three years. Among these,

Mocanu et al. [27] provided a topological insight into RBM, and the authors found that RBM is a factor graph, which naturally

has a small-world topology. Inspired by the viewpoint of that study, we attempt to modify RBM for feature selection, and

so we design a factor graph for feature selection. From the topological viewpoint, the proposed graph is close to RBM,

but the meanings of all the variable nodes and factor nodes in the graph are completely different. Moreover, the inference

and problem formulation proceed according to different theories. Finally, the corresponding algorithm of our approach is

different from RBM. It is worth highlighting the main contributions of this study, as follows: 

1. A novel filter-type unsupervised feature selection algorithm is proposed, namely a factor graph model for unsupervised

feature selection (FGUFS). Furthermore, an energy function is applied to represent the proposed model. 

2. In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message-

passing algorithm is developed for the purpose of inferring the factor graph. 

3. Extensive experiments were conducted on a variety of datasets, demonstrating that the proposed approach outperforms

the state-of-the-art methods in different applications in terms of the most popular performance measures. 

The idea of the proposed filter model is to maximize the MIC between the selected feature subset and the whole features

set, which means that the feature selected subset can preserve the maximum information of all feature sets. The messages

are passed between all features, and finally the importance score of each feature is calculated using the message-passing

algorithm. Unlike existing filter-type methods, which compute the feature importance based on their statistical properties,

FGUFS explicitly measures the feature similarities to build the factor graph and utilizes them for feature selection. The

proposed method is simple and effective. 

The remainder of this paper is organized as follows. We describe related work in Section 2 . In Section 3 , we introduce

the feature selection objective function based on feature similarity. In Section 4 , we present the factor graph model for

feature selection in detail, including the inference method and algorithm description. Experimental results are presented in

Section 5 . Finally, conclusions and further research topics are given in Section 6 . 

2. Related work 

Existing feature selection algorithms are based on various selection strategies, which can be broadly classified into fil-

ter, wrapper, and embedded methods. Filter methods select features based on their intrinsic properties, which are often

measured by certain statistical criteria. Brown et al. [2] proposed a unifying framework for feature selection based on infor-

mation theory, which is a typical filter method for feature selection. The relevance or discriminative powers of the selected

features can be determined using predictive labels. ReliefF [31] , the Fisher score, correlation-based feature selection [14] ,

and the fast correlation-based filter [43] are among the most representative filter-type feature selection methods. In wrap-

per methods, feature selection is integrated with a learning algorithm or model. Its performance is directly evaluated by

the performance of the learning algorithm or model [49] . In general, wrapper methods can obtain better results than filter

methods, although they entail much higher computational costs. Embedded methods select features as a part of the model

construction process. Banerjee and Pal [1] designed an interesting unsupervised feature selection scheme that can select fea-

tures with controlled redundancy and also discard irrelevant features. Wang et al. [37] designed an embedded unsupervised

feature selection method, which can embed feature selection into a clustering algorithm. 

According to whether the labels or other information are used to train the feature selection model, feature selec-

tion methods can also be classified as unsupervised [1,5,17,20,26,28,37,41,44,46] , semi-supervised [39,45] , and supervised

[21,29,32,38,40] . Supervised and semi-supervised feature selection methods make use of discriminative information, which

is usually encoded in labels, constraints, or other background information, while unsupervised feature selection involves

designing the model or algorithm without labels or background information. 

2.1. Unsupervised feature selection 

Supervised feature selection has been successfully applied in industries. However, the selection of discriminative fea-

tures in unsupervised scenarios is a significant and difficult task owing to the lack of information. Cai et al. [3] proposed

a multi-cluster feature selection method for unsupervised feature selection. This approach can preserve the multi-cluster

structure of the data, but it can solve the sparse eigenproblem or an L 1 -regularized least squares problem. A hierarchical

graphical model [12] has been proposed that can achieve both global and local feature selection for clustering. This uses a

beta-Bernoulli prior and Dirichlet process for mixture models. Gu et al. [11] proposed a locality-preserving feature learning
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approach. That method finds a subset of features, and then a linear transformation is learned from these features to opti-

mize the locality-preserving criterion. Law et al. [22] designed an expectation-maximization algorithm based on Gaussian

mixture-based clustering for feature salience, and they extended Koller and Sahami’s mutual-information-based criterion 

for unsupervised feature selection. Luo et al. [24] designed an adaptive reconstruction graph to characterize the intrinsic

local structure, and then employed a multi-cluster structure to impose a rank constraint on the corresponding Laplacian

matrix. Here, the optimal reconstruction graph and selective matrix can be learned simultaneously. He et al. [17] proposed

a filter method using the Laplacian score for feature selection. It is interesting that this method can be applied in either a

supervised or unsupervised fashion. The method is applied in unsupervised learning scenarios in their study. Moreover, He

et al. [17] proposed a unified supervised and unsupervised Laplacian score feature selection method, and enabled their joint

study under a general framework. Yang et al. Yang et al. [41] incorporated discriminative analysis and � 2, 1 -norm minimiza-

tion into a joint framework for unsupervised feature selection, which can preserve the most discriminative feature subset.

Nie et al. [28] proposed a feature selection method in which feature selection and local structure learning are achieved

simultaneously. Gui et al. [13] explored various structured sparsity-inducing feature selection methods, and conducted a

comprehensive study investigating the connections between different methods. Hou et al. [20] designed an unsupervised

feature selection method for joint embedding learning and sparse regression. Then, the weights via local linear approxima-

tion incorporating � 2, 1 -norm regularization are used to solve the optimization problem. 

2.2. Graphical model for dimensionality reduction 

Graphical models have been employed for feature selection, feature transformation, and automatic feature representation

learning. A graphical model is used to represent the relationships between labels and features. This is a supervised feature

selection model. Law et al. [23] proposed a mixture model for simultaneous feature selection and clustering. A directed

graphical model is designed, and this is inferred with conditional probabilities [12] for feature selection. Unsupervised fea-

ture selection is considered from the viewpoint of graph-regularized data reconstruction. Graph regularization [48] can be

used to preserve the local structure of the original data space, and linear combination is also applied to approximately re-

construct each data point. Sun and Zhou [33] proposed a directed acyclic graph model for unsupervised feature selection,

which conforms to all the properties of a Bayesian network. 

A factor graph is a popular tool utilized in many situations. For example, RBM [19] is a factor graph, which is used as

encoder and decoder for deep learning. A simple neural network can be regarded as two or more factor graphs connected

with each other. Affinity propagation (AP) [6] is also a factor graph for clustering, which can be applied for feature selection

[44] . Zhao et al. [44] used the maximal information coefficient to obtain the similarity matrix, and applied AP to cluster the

features. The representative features of the cluster center are kept for feature selection. 

Most of the above studies relate to unsupervised feature selection and the graph model for dimensionality reduction.

There are hundreds of algorithms based on all kinds of theories, which have advantages and disadvantages from different

perspectives. A few studies have applied graphical models for feature selection or feature transformation. One important

difference between our model and existing graphical models is that in this study an undirected graphical model is employed,

and an energy function is applied to represent the proposed model. Thus far, no methods using energy functions for feature

selection have been proposed. 

Furthermore, a higher goal of unsupervised feature selection is that the selected subset of features obtains the best

clustering or classification results while having minimum redundancy among selected features. However, there are very few

methods to achieve this higher goal, especially when it comes to filter feature selection methods. In general, a filter method

involves pursuing the highest accuracy in clustering or classification, but ignores the redundancy among selected features.

The characteristics of the factor graph can effectively model feature selection according to the similarities between features.

The variable nodes represent the features effectively, and the function nodes indicate whether the corresponding features

are selected. The full connection between a variable and functional node indicates that they have fully communicated with

each other and have reached the selected subset, preserving the maximum correlation of the feature set and achieving less

redundancy at the same time. 

3. Feature selection objective function based on feature similarity 

In this section, we provide the definition of the MIC [30] for measuring the relationship between features, and we de-

scribe the details of the proposed objective function for unsupervised feature selection based on feature similarity. The main

notations utilized in the paper are summarized in Table 1 . 

To measure the similarity between features, the mutual information I ( f i , f j ) between features f i and f j is given by 

I( f i , f j ) = H( f i ) − H( f i | f j ) 
= 

∑ 

f r 
i 
∈ f i 

∑ 

f u 
j 
∈ f j 

p 
(

f r i , f 
u 
j 

)
log 2 

p( f r 
i 
, f u 

j 
) 

p( f r 
i 
) p( f u 

j 
) 

= E p( f r 
i 
, f u 

j 
) 

[
log 2 

p( f r 
i 
, f u 

j 
) 

p( f r 
i 
) p( f u 

j 
) 

]

where p( f r 
i 
) and p( f u 

j 
) are elements of f . To more accurately determine the relationship between two discrete, two real, or

mixed features (one real and one discrete), the MIC [30] is applied to calculate the similarity between the features. Let F 
P 
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Table 1 

Main notation. 

Symbol Explanation 

f Random variable of a feature 

D A set of ordered pairs of features 

G A grid constructed from all the feature pairs 

w ( f i ) The hidden variable in a factor graph 

h The serial number of the selected feature 

I A function that computes mutual information 

MIC Maximal information coefficient [30] 

S A function that computes similarity 

M The number of features 

E The energy function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be a set of ordered pairs of features. Furthermore, let the i - and j -values of F P be partitioned one-by-one into i and j bins,

respectively, and let a pair of partitions define an i -by- j grid G . Given such a grid G , let F P | G be the distribution induced by

the points in F P on the cells of G . That is, the distribution on the cells of G obtained by letting the probability mass in each

cell be the fraction of points in D falling in that cell. For a fixed F P , different grids G result in different distributions F P | G . 

For a finite set F P ⊂ R 

2 and positive integers i, j , 

I ∗(F P , i, j) = max I(F P | G ) , 
where max is the maximum over all grids G with i columns and j rows, and I ( F P | G ) denotes the mutual information of F P | G .

Then, the characteristic matrix and MIC of F P can be defined in terms of I ∗. The characteristic matrix M ( F P ) of a set F P of

two-variable data is an infinite matrix with entries 

M(F P ) (i, j) = 

I ∗(F P , i, j) 

log min { i, j} . 
The MIC of a set F P of two-variable data with sample size M and a grid size less than B ( M ) is given by 

MIC(F P ) = max 
i j<B (M) 

M(F P ) (i, j) , 

where ω(1) < B (M) ≤ o(n M 

1 −ε 
) for some 0 < ε < 1. The MIC falls between 0 and 1 and is symmetric, and higher values imply

greater relevance between features. 

Brown et al. [2] presented a unifying framework for feature selection based on mutual information, which formulates the

feature selection task as a conditional likelihood problem. In the proposed algorithm, The MIC is the maximum value of the

mutual information matrix and is used to measure the similarity between features. However, all the methods mentioned

in [2] use mutual information to measure the relevance between features. The MIC finds the f i -by- f j grid with the highest

induced mutual information, and the mutual information scores are normalized. Then, the normalized scores form a matrix,

and the MIC is the highest score of the matrix. The MIC is calculated according to mutual information. However, it is the

highest normalized mutual information, and strengthens the relationship between the two features. It is more capable of

reflecting the dependence between two attributes and is used to evaluate the similarity of features, which can better reduce

the redundancy among features. However, owing to the higher complexity of the MIC, it requires more time than mutual

information to evaluate the similarities among features. 

For unsupervised feature selection, the best selected subset should contain the lowest number of features that retain as

much of the original information as possible. Given a high dimensional dataset X = (x 1 , . . . , x n ) in the instance space and

F = ( f 1 , . . . , f M 

) in the feature space, where x i ∈ R and f j ∈ R , let K be the number of selected features, and let F̄ = { ̄f 1 , . . . , f̄ K }
denote the selected feature subset. 

In terms of maintaining the original information (e.g., maximum mutual information), the feature selection objective

function can be expressed as follows: 

�( ̄F ) = arg max 
F̄ 

( 
M ∑ 

j=1 

K ∑ 

i =1 

MIC( ̄f i , f j )) (1)

s.t f̄ i � = f j , 

where K and M are the numbers of selected and total features, respectively, and F̄ is the subset of selected features.

Eq. (1) maximizes the MIC between the selected feature subset and whole feature set, which means that the selected feature

subset can preserve the maximum information of all feature sets. In other words, to a certain extent maximizing the MIC

can remove redundant features. 

If an exhaustive search for the objective function in Eq. (1) with M features with N dimensions is employed and K

features are selected, then the computation complexity is O (NM! /K!(M − K)!) . Because this is fairly complex, in the next

section an effective selection approach based on the factor model is presented. 
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Fig. 1. An illustrative example of a factor graph model for unsupervised feature selection. The constructed factor graph for the example dataset in (b) is 

shown in (a). By convention, variable nodes in the graph are represented by circles, and factor nodes are represented by squares. The factor nodes are 

fully connected with variable nodes; whereas, there are no edges between factor nodes or variable nodes. Messages are passed along the edges. (b) shows 

an example dataset of five instances with three features: f 1 = (1 , 2 , 3 , 3 , 3) † , f 2 = (1 , 2 , 2 , 3 , 3) † , f 3 = (2 , 1 , 2 , 3 , 3) † . Assume that only one feature will be 

selected. If the MIC [30] is used to calculate S ( f i , f j ), then S( f 1 , f 2 ) = 0 . 8 , S( f 2 , f 3 ) = 0 . 6 , and S( f 1 , f 3 ) = 0 . 4 . The results are shown in (c). (d) shows the 

similarity matrix, whose diagonal values are set to 0. (e) shows the process of the message-passing algorithm for the factor graph. There are three situations 

in this example: (1) H = (1 , 1 , 1) , indicating that the feature f 1 is selected and the other two are dropped, in which case E(H) = −S( f 2 , f 1 ) − S( f 3 , f 1 ) = 

−1 . 2 ; (2) H = (3 , 3 , 3) , in which case E(H) = −S( f 1 , f 3 ) − S( f 2 , f 3 ) = −1 . 0 ; and (3) H = (2 , 2 , 2) , in which case E(H) = −S( f 1 , f 2 ) − S( f 3 , f 2 ) = −1 . 4 . In (f), 

E(H) = −1 . 4 is clearly the lowest value, indicating that f 2 should be the feature selected according to the objective function. This also illustrates how much 

redundancy is removed among the three features. From another perspective, redundancy is a kind of similarity, and the redundancy of a pair of features can 

be quantitatively measured by the MIC. If the f 1 feature is selected while the other two are dropped, then a redundancy of 1.2 (the redundancy between f 1 
and f 2 is 0.8, and that between f 1 and f 3 is 0.4) is removed between three features. If the feature f 2 is selected while the other two are dropped, then the 

redundancy of 1.4 is removed between three features. If the feature f 3 is selected while the other two are dropped, then the redundancy of 1.0 is removed 

between the three features. Finally, the f 2 feature is selected, because the most redundancy is removed in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. New feature selection method 

In this section, we propose a factor graph model for effective unsupervised feature selection, and then we describe how

to utilize the message-passing algorithm to perform inferences on the model. There are two reasons that a graph factor

model is required to model feature selection. The first is that the factor graph is a popular tool for data preprocessing. The

RBM of deep learning is a factor graph for feature extraction, and affinity propagation is another type of factor graph for

data clustering, which can be also regarded as data preprocessing. However, there is no factor graph for feature selection.

The second reason is that a factor graph can effectively solve the feature selection objective function in Eq. (1) . The two

variables f̄ i and f j in Eq. (1) naturally correspond to two kinds of nodes of the factor graph. Furthermore, an edge of the

factor graph indicates the relationship between the two variables in Eq. (1) . Moreover, the � in Eq. (1) is simply modeled

as the accumulation of weights. 

4.1. Factor graph for unsupervised feature selection 

A factor graph is a bipartite graph with two kinds of nodes: factor and variable nodes. There are no edges between

variable nodes or factor nodes: Edges only connect variable nodes with factor nodes. The factor graph model is simple but

useful, and one designed for feature selection is presented in this section. The idea of FGUFS is that each feature assigns

weights to other features as candidates for selected features according to the similarities between them. Then, these weights

are passed between all nodes of the factor graph and accumulated. Finally, the features are selected according to the accu-

mulated weights. Fig. 1 illustrates the detailed flow of this idea. 

Given high-dimensional data points X or F , the feature selection problem can be modeled using a factor graph G =
(F , ω, S) , where f i ( i = 1 , . . . , M) are viewed as variable nodes, and their similarities are edges S i in the factor graph. Fur-

thermore, ω( F ) are factor nodes, whose weights comprise the feature importance scores. Feature selection on the factor

graph is viewed as the problem of searching for the minimum of an energy function with a set of M hidden variables,

H = { h 1 , . . . , h M 

} , indicating the selection of the M features. In other words, in the factor graph model each feature f i will

choose a feature to represent itself, and the variable h i indicates the index of the feature chosen by the feature f i . We use

f 
(h i ) 

i 
to represent the feature chosen by f i . In general, a feature will choose its nearest neighbor as its representation. We

note that not all configurations of the variables are valid. A configuration H is valid when for a feature f i , if another feature

f ′ 
i 

chooses f i as its representation (i.e., f 
′ (h ′ 

i 
) 

i 
= f i ), then the feature f i must have a high similarity with the feature f ′ 

i 
. The

energy of a valid configuration is as follows: 

E(H) = −
M ∑ 

i =1 

S( f i , f 
(h i ) 
i 

) s.t f i � = f (h i ) 
i 

, (2) 
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where S = MIC( f i , f j ) is a function that computes the similarity between features. It is computationally intractable to mini-

mize the energy, because in a special case this is the NP-hard K-median problem [4] . However, the max-sum algorithm in a

factor graph can be applied to solve the problem of minimizing a Bethe free energy approximation [6,42] . 

4.2. Inference on the factor graph 

In this section, the inference on the factor graph for feature selection is described in detail. The proposed model is a

graph with cycles, and the computation of the marginal probability functions of the model is difficult, because an exponen-

tially large number of terms must be summed. As is well known, the belief propagation (BP) algorithm is always applied

to extract the factor graph model without cycles [42] , and it can obtain the exact result. To our surprise, we found that

this still works well and obtains a good approximate result even when there are cycles in the graph model. Therefore, for

the proposed model BP can be utilized for the inference if the cycles in the proposed model are ignored. Moreover, ow-

ing to the cycles in FGUFS, the messages are skillfully divided into in- and out-messages for a node, which can solve the

message-passing loop problem. 

For inference on the factor model for feature selection, we introduce two types of messages passed from variable nodes

f i to their factor nodes w ( f i ) and vice versa. A message in α← i ( f i ) 
from the feature node i to the factor node α is regarded as

the weights of the relative probabilities that the feature node i is in its different states, based on all the information that i

has received according to the factor w α . The message out α→ i ( f i ) 
from the factor node α to the feature node i is a vector of all

the possible states of f i . This message can be interpreted as the weights from factor node w to feature node i of the relative

probabilities that i is in its different states, based on the factor w α . The messages are updated according to the following

rules: 

in α← i ( f i ) ≡
∏ 

b∈ N(i ) 
⋂ 

b� = α
out b→ i ( f i ) (3)

and 

out α→ i ( f i ) ≡
∑ 

α � = i 
w α( f α) 

∏ 

j ∈ N(α) 
⋂ 

j � = i 
in α← j( f j ) , (4)

where N ( α) is a set of α neighbors. This is a standard BP algorithm, which can be utilized to infer the proposed feature

selection model. It is also a sum-product algorithm with the sum and product. The BP algorithm can be formally defined in

terms of belief equations. The beliefs and joint beliefs in feature nodes can be computed through the BP message-update

method until they converge (although sometimes they will not). 

The factor model of feature selection has cycles, and in our model we apply the Bethe free energy to deal with this

situation. According to Yedidia et al. [42] , the BP algorithm corresponds to the stationarity conditions for the beliefs of

the Bethe free energy, and the BP fixed points converge to the local optima of the Bethe free energy [42] . This fact shows

that the BP algorithm can handle the factor graph of feature selection with cycles and that BP is improved upon by the

approximation results of the Bethe free energy. 

In a simplified form, feature selection can be viewed as searching over valid configurations of the state H = (h i , . . . , h M 

)

to minimize the energy function as follows: 

E(H) = −
M ∑ 

i =1 

S( f i , f 
(h i ) 
i 

) , (5)

where f 
(h i ) 

i 
represents the feature selected by f i . In other words, E ( H ) is the objective function of feature selection, and the

problem can be modeled as follows: 

H 

∗ = arg min 

H 
(−

M ∑ 

i =1 

S( f i , f 
(h i ) 
i 

) , (6)

where H goes though all possible states and H 

∗ is the optimal one. The maximization of the net similarity of the factor

model, which is the negative energy plus a constraint function, makes the configurations available. 

S(H) = −E(H) + 

M ∑ 

k =1 

ω k ( f (h ) 
k 

) 

= 

M ∑ 

i =1 

S( f i , f 
(h i ) 
i 

) + 

M ∑ 

k =1 

ω k ( f (h ) 
k 

) . (7)

It is precisely the min-sum algorithm that is employed for the factor graph of feature selection, and this represents a

local message-passing algorithm over the factor graph. Two kinds of messages are passed back and forth between factor and

feature nodes during the execution of the min-sum algorithm. If the message-passing algorithm is utilized, then M messages
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can be reduced to a single message. A message sent from factor nodes ω k ( f (h ) 
k 

) to f 
(h i ) 

i 
consists of M real numbers and can

be denoted by out i ← k ( j ). At any time, the value of f 
(h i ) 

i 
can be estimated by summing over all in messages and correlation

messages. 

Because the in messages originate from features, they are computed as the element-wise sum of all in messages: 

in i → k (h i = k ) 

= S( f i , f k ) − max 
i, j � = k 

[ S( f i , f j ) + out i ← j (h j = j)] . (8) 

Messages sent from factor nodes to feature nodes are computed by summing over the in messages and then maximizing

over all feature nodes except the one that the message is being sent to. The message sent from the factor ω k to feature f i is

as follows: 

out i ← k (h i = k ) = min [0 , in i → k (h k = k ) 

+ 

∑ 

i ′ � = { i,k } 
max (0 , in i ‘ → k (h i = k ))] , k � = i, (9) 

or 

out i ← k (h i = k ) 

= 

∑ 

i ′ � = k 
max (0 , in i ‘ → k (h i = k )) , k = i. (10) 

To estimate the value of a variable f 
(h i ) 

i 
after any iteration, we sum over all in and out messages to f 

(h i ) 

i 
and take the value

that minimizes the objective function. To elucidate the proposed model more clearly, we consider a simple example with

three features to illustrate how the factor graph model for feature selection works, which is shown in Fig. 1 . 

In affinity propagation, representative data points are chosen as cluster centers, and the proposed model keeps the rep-

resentative features as the selected features. We believe that the representative features can preserve considerably more

information than other features. Even though the proposed model is inspired by affinity propagation [6] , there are two

differences between the two: 

1. Affinity propagation requires the input of a preference p , whereas the proposed model does not require this parameter:

it only requires the input parameter of the similarity matrix. 

2. Affinity propagation outputs the exemplar of each data point, whereas the proposed model outputs the rank of each

feature, after which we select the top l features according to the requirements. 

4.3. Algorithm description 

According to the above factor model and inference procedure for feature selection, the proposed algorithm is summarized

as follows: 

FGUFS algorithm : 

Input : An M-by- M similarity matrix of features. 

Output : The feature ranks. 

1. Initialize the in and out messages as in 0 = 0 and out 0 = 0 . 

2. Begin the iteration: 

(a) out message function: Compute all the messages from factor nodes ω to variable nodes f according to Eqs. (9, 10)

with in (t−1) and out (t−1) , where t is the order of iteration, to obtain an out t matrix. 

(b) in message function: Compute all the messages from variables according to Eq. (8) with out t and in (t−1) to obtain an

in t matrix. 

3. End the iteration when Eq. (5) is satisfied or when the in and out messages are stable. 

4. Sum over all the messages produced by the out and in functions for each factor node, and order the nodes according to

the messages. 

The algorithm alternates between two functions, out and in message-passing steps, until convergence. Each out or in

message function requires M operations, and each iteration requires 2 × M operations. Thus, the complexity of the algorithm

is O (2 TM ), where M is the number of features and T is the number of iterations. It is well known that a message-passing
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Table 2 

Sources and numbers of instances, features, and classes in each dataset. 

Dataset Source Characteristic Instances Features Categories 

DriveFace UCI real 606 6400 3 

secom UCI real 1567 590 2 

sEMG_sub UCI real 400 2500 2 

isolet UCI real 1560 617 2 

apple Microsoft image 871 892 3 

arcene_valid NIPS2003 real 100 10 0 0 0 3 

beer Microsoft image 870 892 3 

beret Microsoft image 876 892 3 

bible Microsoft image 835 892 3 

boot Microsoft image 845 892 3 

brain Microsoft image 891 892 3 

bugatti Microsoft image 882 892 3 

ufo Microsoft image 881 899 3 

video Microsoft image 936 899 3 

vistawallpaper Microsoft image 799 899 3 

weddingdress Microsoft image 883 899 3 
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algorithm for factor graphs may not converge in numerous problems. In this study, we use free-energy minimizations to

perform inference, to guarantee convergence with a low computational power cost [42] . The proposed algorithm requires

considerable memory space on a single computer as the number of features increases, because the input of the algorithm

is designed to be an M -by- M similarity matrix of features. This limitation can be solved using a triple-table representation

of the matrix and a corresponding programming implementation, for which the time consumption complexity increases.

Therefore, the limitation of our algorithm is that it requires significant memory space when applied to large datasets with

a large number (more than 50,0 0 0) of features. 

5. Empirical study 

In this section, we first introduce the datasets, algorithms, and evaluation metrics in the experiment. Then, we discuss

the steps performed in the experiment and its results. 

5.1. Experimental setup 

In the experiment, we compared the performance of our proposed algorithm, FGUFS, with five other widely employed

unsupervised feature selection algorithms: LaplacianScore [17] , fsSpectrum [46] , LquadR 21 _ reg [41] , embedded unsupervised

feature selection (EUFS) [37] , and structured optimal graph feature selection (SOGFS) [28] . LaplacianScore is a filter-type

method, which evaluates the importance of a feature based on its power to preserve locality. Furthermore, fsSpectrum de-

termines the feature importance based on a spectrum analysis of feature similarity, LquadR 21 _ reg performs feature selection

by incorporating a discriminative analysis and l 2, 1 -norm minimization, and SOGFS can perform feature selection and local

structure learning simultaneously. In addition, EUFS is an embedded-type unsupervised feature selection, which directly

performs feature selection by embedding in a clustering algorithm. 

We performed an experimental comparison of the datasets from different applications using different characteristics.

These are summarized in Table 2 . These datasets were variously obtained from UCI, the NIPS2003 competition, and Microsoft

Research Asia Multimedia. A validation strategy can be employed in unsupervised learning to estimate the distributions of

parameters in a dataset. This is not required in this experiment, because no assumptions concerning the distributions of

datasets are integrated into the proposed algorithm. 

To test the quality of the selected features, we performed the following four types of evaluation: 

1) The achieved accuracy by clustering algorithms on the selected features, 

2) The Rand index (RI) achieved by clustering algorithms on the selected features, 

3) The purity achieved by clustering algorithms on the selected features, and 

4) The redundancy contained in the selected features. 

The three measures of accuracy, RI, and purity are generally positively correlated, and larger values indicate better clus-

tering results. An ideal feature selection algorithm should select features that result in high accuracy, Rand index, and purity,

while containing few redundant features. The performance measures are described in detail below. 

1. All of the above datasets come with labels. Viewing these labels as indicative of a reasonable clustering, we used the

micro-precision (MP) to evaluate the clustering accuracy. The micro-precision is defined as MP = 

∑ k 
i =1 a i /n, where k is

the number of clusters, n is the number of objects, and a i denotes the number of objects in cluster i that are correctly

assigned to the corresponding class. Note that 0 ≤ MP ≤ 1, with 1 indicating the best possible clustering, which requires

full agreement with the class labels. 
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2. The Rand index was also calculated to evaluate the results of the clustering. RI is usually employed for standard clas-

sification problems, and it is a natural extension to use it to compare two clustering results. Thus, RI is defined as

R (C, C ′ ) = 

2(n 11 + n 00 ) 
n (n −1) 

, where R ranges from 0 to 1. Higher values are better. 

3. The purity is a count of the number of data points from the ground truth cluster that each prediction cluster contains.

The purity of a clustering result is the sum of the individual cluster purities, or purity = 

∑ K 
i =1 

n i 
n P (s i ) , P (s i ) = 

1 
n i 

max j (n 
j 
i 
) ,

where S i is a particular cluster of size n i and n 
j 
i 

is the number of features from the i th input class assigned to the j th

cluster. 

4. We used the redundancy rate (RED) [47] to measure the redundancy among the selected features. Assume that F is the

set of selected features. Then, the redundancy rate of F is computed as RED (F ) = 

∑ 

f i , f j ∈ F,i � = j I( f i , f j ) , where I ( f i , f j ) is

the mutual information between the two features f i and f j . This measurement enumerates all the mutual information

among the feature pairs, and a high value indicates that many selected features are strongly correlated, and thus, that

redundancy is expected to exist in F . Lower RED values indicate a better feature selection performance. 

5.2. Results 

For each dataset, we first applied the six unsupervised learning algorithms FGUFS, EUFS, LaplacianScore, fsSpectrum,

LquadR 21 _ reg, and SOGFS to perform feature selection. The number of selected features ranged from three to M − 1 . Then,

the K-means algorithm with random initialization was applied to the selected features for clustering. This was repeated five

times to obtain an average of the results. The accuracy results were recorded one-by-one. The average accuracies are listed

in Table 3 , and the detailed accuracies are illustrated in Fig. 2 . For example, in Table 3 , the accuracy of FGUFS on the dataset

apple is given as 0.4623, which is the average from the figure dataset: apple in Fig. 2 . The figure dataset: apple contains

598 accuracy values, which were obtained by applying FGUFS on the same dataset, apple , with different numbers of selected

features. Fig. 2 shows the detailed results for different numbers of selected features. The x -axis represents the number of

selected features, and the y -axis represents the accuracy obtained by the algorithm on the corresponding selected features.

We also recorded the clustering accuracies of K-means clustering on the original datasets without feature selection. From

Table 3 , it is clear that the proposed algorithm, FGUFS, outperforms all the other algorithms, and obtains the best average

clustering accuracy results for all datasets. Moreover, we note that FGUFS obtains the 15 best among all results, including

the original column results. However, Table 3 and Fig. 2 show that FGUFS exhibits a considerably larger variance compared

with the baseline approaches. The reason for this is probably that the accuracy is external criteria, but FGUFS is designed

according to internal criteria of feature similarities. 

The Friedman aligned test [8] is employed to perform a further comparison to show the significance of differences be-

tween the algorithms. Table 4 shows the aligned observations with aligned ranks in parentheses for the seven algorithms

and 16 data sets. As presented in the table, on average FGUFS ranks first at 10.1875, fsSpectrum ranks second at 45, EUFS

ranks third at 62.8750, SOGFS ranks fourth at 63.8125, original ranks fifth at 64.9688, LquadR21_score ranks sixth at 73.25,

and LaplacianScore ranks last at 75.4063. The Friedman aligned test can be utilized to check whether the measured sum

of aligned ranks is different from the total aligned ranks ˆ R j = 904 at a high level of significance expected under the null

hypothesis: 

n ∑ 

j=1 

ˆ R 

2 
i,. 

= 346 

2 + 332 

2 + · · · + 305 

2 + 401 

2 = 2 , 548 , 602 

k ∑ 

j=1 

ˆ R 

2 
., j 

= 163 

2 + 1021 

2 + · · · + 1006 

2 + 1039 . 5 

2 = 6 , 509 , 232 . 5 

T = 

(7 − 1)[6 , 509 , 232 . 5 − (7 · 16 

2 / 4)(7 · 16 + 1) 2 ] 

7 × 16(7 × 16 + 1)(2 × 7 × 16 + 1) / 6 − 2 , 548 , 602 / 7 

= 42 . 8210 

For the seven algorithms and 16 data sets, T is distributed according to the chi-squared distribution with 7 − 1 = 6 degrees of

freedom. The p -value computed using the χ2 (6) distribution is 1 . 27 × 10 −7 . Thus, the null hypothesis is significantly rejected.

It is clear that the value is significantly lower than 0.05, which shows that the results of the algorithms are significantly

different. 

For the performance measure RED, Table 5 shows the average redundancies among the selected features, and Fig. 3 il-

lustrates the detailed RED values with different numbers of selected features. Fig. 3 shows that in general, the RED values

increase as the number of selected features increases. Among the 16 datasets, FGUFS obtains the best result in 14 cases and

the second best result in two. Thus, we can conclude that FGUFS is an effective feature selection algorithm, as it outper-

forms alternative algorithms in terms of the RED measure on most datasets. We also note that the RED curves in Fig. 3 are

generally smooth, whereas the accuracy curves in Fig. 2 exhibit relatively large fluctuations. The reason for this is that RED

is an internal criterion, whereas the accuracy is an external criterion. The RED values for FGUFS are considerably lower than

those of the baseline approaches. The reason for this is that FGUFS is designed according to the feature similarity, as shown

in Eqs. (1) and (2) , and RED is calculated by the mutual information, which is a kind offeature similarity. 
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Table 3 

Aggregated clustering accuracies for the selected features obtained by the six feature selection algorithms. These values are computed from the results displayed in Fig. 2 . The original column shows 

the clustering accuracies on the original dataset without feature selection. 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS Original 

DriveFace 0.6372 ± 0.0011 0.5045 ± 0.0014 0.5112 ± 0.0 0 07 0.5381 ± 0.0 0 09 0.4924 ± 0.0 0 08 0.5263 ± 0.0013 0.3647 ± 0.0103 

sEMG_sub 0.5149 ± 0.0014 0.5128 ± 0.0017 0.5010 ± 0.0 0 04 0.5033 ± 0.0 0 08 0.5032 ± 0.0 0 07 0.5020 ± 0.0 0 04 0.5025 ± 0.0 0 01 

brain 0.4 4 41 ± 0.0512 0.3949 ± 0.0016 0.3716 ± 0.0116 0.4010 ± 0.0082 0.3979 ± 0.0459 0.3797 ± 0.0104 0.3754 ± 0.0122 

bugatti 0.4788 ± 0.0532 0.4178 ± 0.0 0 09 0.3920 ± 0.0234 0.4321 ± 0.0424 0.3750 ± 0.0257 0.3986 ± 0.0493 0.4086 ± 0.0315 

secom 0.8772 ± 0.1102 0.7695 ± 0.0010 0.7569 ± 0.0 0 03 0.7804 ± 0.0765 0.7600 ± 0.0208 0.7570 ± 0.0 0 06 0.6439 ± 0.0035 

isolet 0.5583 ± 0.0143 0.5141 ± 0.0010 0.5173 ± 0.0095 0.5462 ± 0.0069 0.5342 ± 0.0044 0.5384 ± 0.0261 0.5654 ± 0.0125 

apple 0.4623 ± 0.0202 0.3804 ± 0.0 0 07 0.3826 ± 0.0149 0.3851 ± 0.0367 0.3715 ± 0.0173 0.3883 ± 0.0216 0.3904 ± 0.0224 

beer 0.5001 ± 0.0429 0.4024 ± 0.0041 0.4372 ± 0.0382 0.4314 ± 0.0439 0.3864 ± 0.0277 0.4523 ± 0.0176 0.4517 ± 0.0211 

beret 0.5695 ± 0.0364 0.4119 ± 0.0018 0.3834 ± 0.0314 0.4866 ± 0.0757 0.3850 ± 0.0226 0.4131 ± 0.0613 0.3983 ± 0.0326 

bible 0.5172 ± 0.0278 0.3727 ± 0.0014 0.3841 ± 0.0235 0.4536 ± 0.0525 0.3734 ± 0.0262 0.3833 ± 0.0323 0.3533 ± 0.0419 

boot 0.5073 ± 0.0227 0.4293 ± 0.0010 0.4494 ± 0.0232 0.4366 ± 0.0188 0.4565 ± 0.0182 0.4673 ± 0.0165 0.4698 ± 0.0124 

ufo 0.4775 ± 0.0344 0.4020 ± 0.0011 0.4057 ± 0.0118 0.4338 ± 0.0199 0.3994 ± 0.0157 0.4083 ± 0.0211 0.4143 ± 0.0211 

video 0.4126 ± 0.0222 0.3784 ± 0.0 0 07 0.3521 ± 0.0221 0.3730 ± 0.0247 0.3874 ± 0.0192 0.3743 ± 0.0170 0.3803 ± 0.0205 

vistawallpaper 0.5147 ± 0.0567 0.4612 ± 0.0026 0.4646 ± 0.0312 0.3850 ± 0.0263 0.4783 ± 0.0418 0.4674 ± 0.0248 0.4731 ± 0.0212 

weddingdress 0.4501 ± 0.0089 0.4132 ± 0.0 0 08 0.3828 ± 0.0128 0.4178 ± 0.0220 0.3955 ± 0.0127 0.3881 ± 0.0225 0.3964 ± 0.0304 

arcene_valid 0.6509 ± 0.0257 0.5939 ± 0.0031 0.5600 ± 0.0000 0.5626 ± 0.0082 0.5148 ± 0.0111 0.5283 ± 0.0217 0.5600 ± 0.0206 
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Fig. 2. The clustering accuracies as a function of the number of selected features for different datasets. The x -axis represents the number of selected 

features and the y -axis shows the corresponding clustering accuracy for each selected feature subspace. The minimum number of selected features was 

three. 

Table 4 

Aligned observations are results of the experimental study, and the ranks in parentheses are used in the computation of the Friedman aligned ranks 

test. 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS Original Total 

DriveFace 1.2657(2) −0.0613(65) 0.0057(44) 0.2747(17) −0.1823 (83) 0.1567(23) −1.4593(112) 346 

sEMG_sub 0.0923(31) 0.0713(34) −0.0467(58) −0.0237(50) −0.0247(51) −0.0367(55) −0.0317(53) 332 

brain 0.4916(12) −0.0 0 04(45) −0.2334(93) 0.0606(37) 0.0296(41) −0.1524(79) −0.1954(84) 391 

bugatti 0.6410(7) 0.0310(40) −0.2270(90) 0.1740(21) −0.3970(104) −0.1610(80) −0.0610(64) 406 

secom 1.1364(3) 0.0594(38) −0.0666(67) 0.1684(22) −0.0356(54) −0.0656(66) −1.1966(111) 361 

isolet 0.1917(20) −0.2503(96) −0.2183(87) 0.0707(35) −0.0493(59) −0.0073(47) 0.2627(19) 363 

apple 0.6793(6) −0.1397(77) −0.1177(75) −0.0927(71) −0.2287(92) −0.0607(63) 0.0397(56) 440 

beer 0.6274(8) −0.3496(101) −0.0016(46) −0.0596(62) −0.5096(106) 0.1494(24) 0.1434(26) 373 

beret 1.3410(1) −0.2350(95) −0.5200(107) 0.5120(11) −0.5040(105) −0.2230(89) −0.3710(102) 510 

bible 1.1183(4) −0.3267(100) −0.2127(86) 0.4823(13) −0.3197(99) −0.2207(88) −0.5207(108) 498 

boot 0.4784(14) −0.3016(98) −0.1006(73) −0.2286(91) −0.0296(52) 0.0784(32) 0.1034(29) 389 

ufo 0.5736(9) −0.1814(81) −0.14 4 4(78) 0.1366(27) −0.2074(85) −0.1184(76) −0.0584(61) 417 

video 0.3287(16) −0.0133(48) −0.2763(97) −0.0673(68) 0.0767(33) −0.0543(60) 0.0057(43) 365 

vistawallpaper 0.5123(10) −0.0227(49) 0.0113(42) −0.7847(110) 0.1483(25) 0.0393(39) 0.0963(30) 305 

weddingdress 0.4383(15) 0.0693(36) −0.2347(94) 0.1153(28) −0.1077(74) −0.1817(82) −0.0987(72) 401 

arcene_valid 0.8369(5) 0.2669(18) −0.0721(69.5) −0.0461(57) −0.5241(109) −0.3891(103) −0.0721(69.5) 

Total 163 1021 1206.5 720 1172 1006 1039.5 

Av. 10.1875 63.8125 75.4063 45 73.25 62.8750 64.9688 
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Fig. 3. RED values as a function of the number of selected features for different datasets. The x -axis represents the number of selected features, and the 

y -axis shows the corresponding RED value for each selected feature subspace. The minimum number of selected features was three. 

Table 5 

Average RED values for clustering on the selected features obtained by the six feature selection algorithms. These values 

are computed from the results displayed in Fig. 3 . 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS 

DriveFace 38.2946 70.4146 103.0627 176.4106 175.3525 322.3064 

sEMG_sub 1149.3955 1243.5670 2879.7289 1851.9101 1315.4745 2683.0336 

brain 4.1591 28.6939 159.8256 303.5970 118.7730 145.5800 

bugatti 6.0556 64.0142 92.1190 245.8041 183.0733 82.8024 

secom 2050.9982 26044.2378 18794.6892 8943.6312 22133.2111 24271.3901 

isolet 173.0386 829.4883 714.5548 619.1127 533.7387 83.3866 

apple 2.5048 113.4718 111.5940 195.9386 163.1931 103.6921 

beer 4.5187 16.5310 67.9050 183.8958 130.5867 107.9549 

beret 3.8185 159.1515 76.3118 194.7961 146.3528 97.0076 

bible 4.2419 184.3093 112.6645 200.8725 175.0474 94.3906 

boot 4.5523 112.9620 86.7909 228.7093 164.0930 122.3118 

ufo 6.6835 170.4752 143.6355 285.5156 191.0317 122.6436 

video 3.9483 122.9589 102.3063 224.6559 106.7811 97.0585 

vistawallpaper 5.2806 173.0898 184.7652 273.0364 182.1953 157.8156 

weddingdress 6.8146 125.3750 61.2869 174.6861 136.7456 75.1762 

arcene_valid 36546.3284 38007.5648 98895.1908 521242.4131 61893.2597 11781.2357 
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Table 6 

Aggregated RI clustering values for the selected features obtained by the six feature selection algorithms. 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS 

DriveFace 0.5162 ± 0.0012 0.4551 ± 0.0073 0.4530 ± 0.0 0 04 0.4767 ± 0.0053 0.4347 ± 0.0042 0.4586 ± 0.0085 

sEMG_sub 0.5009 ± 0.0003 0.5015 ± 0.0 0 05 0.4989 ± 0.0 0 01 0.4993 ± 0.0 0 02 0.4992 ± 0.0 0 01 0.4989 ± 0.0 0 05 

brain 0.5299 ± 0.0189 0.5210 ± 0.0014 0.5097 ± 0.0355 0.4619 ± 0.0082 0.5221 ± 0.0361 0.5173 ± 0.0385 

bugatti 0.4984 ± 0.0075 0.4915 ± 0.0 0 04 0.4920 ± 0.0069 0.4926 ± 0.0093 0.4867 ± 0.0053 0.4922 ± 0.0115 

secom 0.8172 ± 0.1192 0.6462 ± 0.0013 0.6318 ± 0.0 0 03 0.6772 ± 0.1020 0.6368 ± 0.0285 0.6319 ± 0.0 0 06 

isolet 0.5069 ± 0.0030 0.5003 ± 0.0001 0.5005 ± 0.0007 0.5040 ± 0.0013 0.5021 ± 0.0 0 07 0.5040 ± 0.0039 

apple 0.5308 ± 0.0129 0.5417 ± 0.0 0 02 0.5316 ± 0.0143 0.5099 ± 0.0279 0.5234 ± 0.0159 0.5368 ± 0.0195 

beer 0.5369 ± 0.0279 0.5431 ± 0.0010 0.5211 ± 0.0219 0.4874 ± 0.0166 0.5130 ± 0.0148 0.5205 ± 0.0261 

beret 0.5502 ± 0.0103 0.4955 ± 0.0 0 03 0.4923 ± 0.0053 0.5212 ± 0.0273 0.4909 ± 0.0044 0.4992 ± 0.0170 

bible 0.5495 ± 0.0226 0.5309 ± 0.0 0 04 0.5374 ± 0.0068 0.5190 ± 0.0193 0.5349 ± 0.0048 0.5357 ± 0.0100 

boot 0.5511 ± 0.0210 0.5541 ± 0.0 0 05 0.5574 ± 0.0046 0.5304 ± 0.0313 0.5633 ± 0.0046 0.5572 ± 0.0180 

ufo 0.5645 ± 0.0144 0.5618 ± 0.0 0 04 0.5655 ± 0.0047 0.5269 ± 0.0233 0.5632 ± 0.0061 0.5645 ± 0.0175 

video 0.5350 ± 0.0127 0.5475 ± 0.0 0 01 0.5430 ± 0.0073 0.5200 ± 0.0162 0.5353 ± 0.0118 0.5352 ± 0.0127 

vistawallpaper 0.5333 ± 0.0371 0.5253 ± 0.0 0 07 0.5298 ± 0.0168 0.4884 ± 0.0101 0.5336 ± 0.0084 0.5319 ± 0.0122 

weddingdress 0.5151 ± 0.0162 0.5313 ± 0.0 0 04 0.5362 ± 0.0035 0.5145 ± 0.0234 0.5349 ± 0.0028 0.5343 ± 0.0098 

arcene_valid 0.5423 ± 0.0133 0.5197 ± 0.0013 0.5022 ± 0.0 0 0 0 0.5030 ± 0.0020 0.4956 ± 0.0012 0.4975 ± 0.0077 

Table 7 

Aggregated clustering purities for the selected features obtained by the six feature selection algorithms. 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS 

DriveFace 0.9024 0.9011 0.9010 0.9010 0.9010 0.9011 

sEMG_sub 0.5175 0.5154 0.5035 0.5058 0.5057 0.5045 

brain 0.5578 0.5482 0.5477 0.5477 0.5477 0.5477 

bugatti 0.6975 0.6973 0.6973 0.6973 0.6973 0.6973 

secom 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 

isolet 0.5353 0.5141 0.5416 0.5473 0.5301 0.5526 

apple 0.5190 0.5166 0.5167 0.5166 0.5166 0.5166 

beer 0.5472 0.5582 0.5467 0.5437 0.5437 0.5450 

beret 0.6896 0.6895 0.6895 0.6895 0.6895 0.6898 

bible 0.5529 0.5270 0.5317 0.5369 0.5247 0.5260 

boot 0.5355 0.4921 0.4994 0.4936 0.5151 0.4955 

ufo 0.4871 0.4721 0.4837 0.4611 0.4782 0.4894 

video 0.4472 0.4471 0.4467 0.4466 0.4468 0.4466 

vistawallpaper 0.6467 0.6397 0.6469 0.6327 0.6452 0.6427 

weddingdress 0.4721 0.4724 0.4715 0.4592 0.4711 0.4768 

arcene_valid 0.6512 0.6036 0.5600 0.5646 0.5600 0.5620 

Table 8 

Running times in seconds of the six feature selection algorithms on the datasets. 

Dataset FGUFS SOGFS LaplacianScore fsSpectrum LquadR21_score EUFS 

DriveFace 86.2627 24458.8484 0.1367 6.2542 2795.7639 37.5841 

sEMG_sub 14.9605 2706.1599 0.0462 1.1287 125.4637 40.0862 

brain 3.7483 422.8922 0.0536 3.9844 25.3108 14.8432 

bugatti 3.7753 314.9103 0.0511 3.8081 25.7482 15.8075 

secom 3.5898 119.3594 0.0575 13.2770 10.6062 25.9769 

isolet 3.9503 36.4483 0.0605 14.5688 12.1631 26.7744 

apple 3.7792 817.1589 0.0596 3.7095 26.7432 15.1322 

beer 3.7627 893.8309 0.0563 3.7028 25.6826 19.6022 

beret 3.7659 530.6257 0.0511 3.6906 26.1828 14.7244 

bible 3.7608 486.1239 0.0490 3.3790 24.7814 13.2966 

boot 4.1047 358.4164 0.0500 3.3805 26.2758 13.6209 

ufo 3.9850 1559.0823 0.0533 3.7857 25.6541 23.8379 

video 3.7739 577.7876 0.0577 4.4421 25.1477 17.0262 

vistawallpaper 3.7939 230.7871 0.0463 3.1177 34.6376 17.5579 

weddingdress 3.9919 413.1151 0.0531 3.8438 26.5721 23.5552 

arcene_valid 951.1334 89400.1874 0.0923 0.4797 6301.1950 13.0191 

 

 

 

 

 

RI was also employed to evaluate the clustering results. Table 6 shows the Rand index results obtained by the various

feature selection methods. Among the six methods, FGUFS obtains the best result in eight of the datasets, whereas SOGFS

achieves the best result in four, and LaplacianScore and LquadR 21 _ score each obtain the best result in two. To some degree,

these results also show that the proposed algorithm outperforms the others. 

Finally, the purity results for the various feature selection methods are presented in Table 7 . Among the six methods,

FGUFS obtains the best result for 10 datasets, whereas the other five algorithms collectively achieve the other six best
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Fig. 4. Clustering accuracies for different percentages of noise in the features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

results. We also note that all the algorithms obtain the same result on the dataset secom . These results show that the

proposed algorithm is highly meaningful. 

In addition to the four evaluations, the runtimes on the different datasets were recorded for each algorithm, and are

listed in Table 7 . Among the six methods, LaplacianScore, a filter-type method that evaluates features based on their locality-

preserving power, is the most efficient. Our proposed FGUFS algorithm requires time to construct the factor graph and

perform the inference. However, its runtime is neutral, occupying a middle rank. 

Moreover, noise was randomly added to the existing features for the experiment, and the corresponding biases of the

accuracies were recorded. The biases of the accuracies were calculate according to b = | a noise − a nonoise | , where a noise is the

accuracy with noise in features and a nonoise is the accuracy without noise in features. In Fig. 4 , the x axis represents the

percentages of noise in features, and the y axis shows the biases of accuracies corresponding to these. We can see that the

accuracies of all algorithms oscillate with the increasing percentage of noise. however, the variance is far lower than the

noise ratio. FGUFS performs second best in this experiment, and the results show that the proposed algorithm is highly

competitive among the six algorithms. 

To summarize, the experimental results show that the proposed feature selection algorithm FGUFS is able to select a

subset of features resulting in a high clustering accuracy, RI, and purity, while containing few redundant features. Therefore,

FGUFS significantly enhances the unsupervised feature selection performance and can deal with noisy features. 

6. Conclusions 

In this study, a factor graph model has been proposed for unsupervised feature selection. To best of our knowledge, this

is the first study to solve feature selection by using a factor graph, which is a filter method utilizing feature similarities and

message passing between features. The only input to FGUFS is the feature similarity matrix, and so it is simple but effective.

In FGUFS, the MIC is used to measure the similarities between features. Then, a factor graph model for feature selection is

utilized, and the message-passing algorithm is employed to perform the inference. Extensive experiments on datasets from

UCI, the NIPS2003 competition, and Microsoft were conducted to evaluate the effectiveness of our proposed algorithm. The

results demonstrate that FGUFS outperforms other state-of-the-art unsupervised feature selection algorithms, and that it can

select a subset of features with high accuracy and low redundancy. 

There are several possible avenues for future research. First, the problem of determining the best number of features for

unsupervised learning has yet to be explored. Second, it would be natural to study the factor-graph-based framework for

supervised feature selection. Furthermore, the MapReduce framework can be used to modify the proposed method, and the

runtime can be improved. 
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